Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers

Colloids Surf B Biointerfaces. 2019 Jan 1:173:295-302. doi: 10.1016/j.colsurfb.2018.09.072. Epub 2018 Sep 29.

Abstract

Hypothesis: The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity.

Experiments: We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model.

Findings: The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.

Keywords: Biomolecule loaded nanoparticles; Colloidal stability; Dilatational rheology; Double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique; Lysozyme; Oil/water interface; Pluronic F68; Polymeric nanoparticles; Surface tension; Surfactant-protein interaction.

MeSH terms

  • Animals
  • Chickens
  • Chloroform / chemistry*
  • Drug Carriers / chemistry*
  • Egg White / chemistry
  • Emulsions
  • Muramidase / chemistry*
  • Nanoparticles / chemistry*
  • Particle Size
  • Poloxamer / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer / chemistry
  • Surface Properties
  • Surface Tension
  • Water / chemistry*

Substances

  • Drug Carriers
  • Emulsions
  • Water
  • Poloxamer
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Chloroform
  • Muramidase