Nonreciprocity Realized with Quantum Nonlinearity

Phys Rev Lett. 2018 Sep 21;121(12):123601. doi: 10.1103/PhysRevLett.121.123601.

Abstract

Nonreciprocal devices are a key element for signal routing and noise isolation. Rapid development of quantum technologies has boosted the demand for a new generation of miniaturized and low-loss nonreciprocal components. Here, we use a pair of tunable superconducting artificial atoms in a 1D waveguide to experimentally realize a minimal passive nonreciprocal device. Taking advantage of the quantum nonlinear behavior of artificial atoms, we achieve nonreciprocal transmission through the waveguide in a wide range of powers. Our results are consistent with theoretical modeling showing that nonreciprocity is associated with the population of the two-qubit nonlocal entangled quasidark state, which responds asymmetrically to incident fields from opposing directions. Our experiment highlights the role of quantum correlations in enabling nonreciprocal behavior and opens a path to building passive quantum nonreciprocal devices without magnetic fields.