Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria

Trends Plant Sci. 2018 Dec;23(12):1116-1130. doi: 10.1016/j.tplants.2018.09.008. Epub 2018 Oct 3.

Abstract

Carbon and nitrogen are the two most abundant nutrient elements for all living organisms, and their metabolism is tightly coupled. What are the signaling mechanisms that cells use to sense and control the carbon/nitrogen (C/N) metabolic balance following environmental changes? Based on studies in cyanobacteria, it was found that 2-phosphoglycolate derived from the oxygenase activity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and 2-oxoglutarate from the Krebs cycle act as the carbon- and nitrogen-starvation signals, respectively, and their concentration ratio likely reflects the status of the C/N metabolic balance. We will present and discuss the regulatory principles underlying the signaling mechanisms, which are likely to be conserved in other photosynthetic organisms. These concepts may also contribute to developments in the field of biofuel engineering or improvements in crop productivity.

Keywords: Nitrogen metabolism; carbon fixation; photorespiration; signal transduction.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Carbon / metabolism*
  • Cell Respiration
  • Cyanobacteria / metabolism*
  • Metabolic Networks and Pathways
  • Nitrogen / metabolism*
  • Photosynthesis
  • Signal Transduction

Substances

  • Carbon
  • Nitrogen