A new generation of effective core potentials from correlated calculations: 3d transition metal series

J Chem Phys. 2018 Oct 7;149(13):134108. doi: 10.1063/1.5040472.

Abstract

Recently, we have introduced a new generation of effective core potentials (ECPs) designed for accurate correlated calculations but equally useful for a broad variety of approaches. The guiding principle has been the isospectrality of all-electron and ECP Hamiltonians for a subset of valence many-body states using correlated, nearly-exact calculations. Here we present such ECPs for the 3d transition series Sc to Zn with Ne-core, i.e., with semi-core 3s and 3p electrons in the valence space. Besides genuine many-body accuracy, the operators are simple, being represented by a few gaussians per symmetry channel with resulting potentials that are bounded everywhere. The transferability is checked on selected molecular systems over a range of geometries. The ECPs show a high overall accuracy with valence spectral discrepancies typically ≈0.01-0.02 eV or better. They also reproduce binding curves of hydride and oxide molecules typically within 0.02-0.03 eV deviations over the full non-dissociation range of interatomic distances.