Potential role for microRNA in facilitating physiological adaptation to hypoxia in the Pacific whiteleg shrimp Litopenaeus vannamei

Fish Shellfish Immunol. 2019 Jan:84:361-369. doi: 10.1016/j.fsi.2018.09.079. Epub 2018 Oct 3.

Abstract

Hypoxia is one of the most common physiological stressors in shrimp farming. Post-transcriptional regulation by microRNAs has been recognized as a ubiquitous strategy to enable transient phenotypic plasticity and adaptation to stressful environment, but involvement of microRNAs in hypoxia stress response of penaeid shrimp remains elusive. In this study, small RNA sequencing and comparative transcriptomic analysis was conducted to construct a comprehensive microRNA dataset for the whiteleg shrimp Litopenaeus vannamei exposed to hypoxia challenge. A total of 3324 known miRNAs and 8 putative novel miRNAs were identified, providing a valuable resource for future investigation on the functional mechanism of miRNAs in shrimp. Upon hypoxia, 1213 miRNAs showed significant differential expression, and many well-known miRNAs involved in hypoxia tolerance such as miR-210, let-7, miR-143 and miR-101 were identified. Remarkably, the vast majority of these miRNAs were up-regulated, suggesting that up-regulation of miRNAs may represent an effective strategy to inhibit protein translation under stressful hypoxic condition. The differentially expressed miRNAs were potentially targeting a wide variety of genes, including those with essential roles in hypoxia tolerance such as HIF1a and p53. GO and KEGG enrichment analysis further revealed that a broad range of biological processes and metabolic pathways were over-represented. Several GO terms associated with gene transcription and translation and KEGG pathways related to cytoskeleton remodeling, immune defense and signaling transduction were enriched, highlighting the crucial roles of these cellular events in the adaptation to hypoxia. Taken together, our study revealed that the differentially expressed miRNAs may regulate host response to hypoxia by modulating the expression of stress response genes such as HIF1a and p53 and affecting key cellular events involved in hypoxia adaptation. The findings would expand our knowledge of the biochemical and molecular underpinnings of hypoxia response strategies used by penaeid shrimp, and contribute to a better understanding of the molecular mechanisms of hypoxia tolerance in decapod crustaceans.

Keywords: Hypoxia; Litopenaeus vannamei; Shrimp; Stress; microRNA.

MeSH terms

  • Adaptation, Physiological
  • Anaerobiosis
  • Animals
  • Gene Expression Profiling
  • Gene Expression Regulation*
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Penaeidae / genetics
  • Penaeidae / physiology*
  • Sequence Analysis, RNA

Substances

  • MicroRNAs