On-site treatment of flowback and produced water from shale gas hydraulic fracturing: A review and economic evaluation

Chemosphere. 2018 Dec:212:898-914. doi: 10.1016/j.chemosphere.2018.08.145. Epub 2018 Aug 30.

Abstract

On-site flowback treatment systems are typically rated and selected based on three fundamental categories: satisfying customer needs (e.g. meeting effluent quality, capacity, delivery time and time required to reach stable and steady effluent quality), common features comparison (e.g. treatment costs, stability of operation, scalability, logistics, and maintenance frequency) and through substantial product differentiation such as better service condition, overcoming current market limitations (e.g. fouling, salinity limit), and having lower environmental footprints and emissions. For treatment of flowback, multiple on-site treatment systems are available for primary separation (i.e. reducing TSS concentrations and particle size below 25 μm for disposal), secondary separation (i.e. removing TSS, iron and main scaling ions, and reducing particle size up to 5 μm for reuse), or tertiary treatment (i.e. reducing TDS concentration in the permeate/distillate to below 500 mg/L) for recycling or discharge. Depending on geographic features, frac-fluid characteristics, and regulatory aspects, operators may choose disposal or reuse of flowback water. Among these approaches, desalination is the least utilized option while in the majority of cases on-site basic separation is selected which can result in savings up to $306,800 per well. Compared to desalination systems, basic separation systems (e.g. electrocoagulation, dissolved air floatation) have higher treatment capacity (159-4133 m3/d) and specific water treatment production per occupied space (8.9-58.8 m3/m2), lower treatment costs ($2.90 to $13.30 per m3) and energy demand, and finally generate less waste owing to their high recovery of 98-99.5%, which reduces both operator costs and environmental burdens.

Keywords: Decentralized wastewater treatment; Economic feasibility; Flowback treatment costs; Hydraulic fracturing; Wastewater treatment technologies.

Publication types

  • Review

MeSH terms

  • Cost-Benefit Analysis
  • Environment
  • Hydraulic Fracking / economics*
  • Natural Gas*
  • Water / chemistry*

Substances

  • Natural Gas
  • Water