Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level

BMC Vet Res. 2018 Oct 3;14(1):302. doi: 10.1186/s12917-018-1626-6.

Abstract

Background: In order to ensure sustainability of aquaculture production of carnivourous fish species such as the gilthead seabream (Sparus aurata, L.), the impact of the inclusion of alternative protein sources to fishmeal, including plants, has been assessed. With the aim of evaluating long-term effects of vegetable diets on growth and intestinal status of the on-growing gilthead seabream (initial weight = 129 g), three experimental diets were tested: a strict plant protein-based diet (VM), a fishmeal based diet (FM) and a plant protein-based diet with 15% of marine ingredients (squid and krill meal) alternative to fishmeal (VM+). Intestines were sampled after 154 days. Besides studying growth parameters and survival, the gene expression related to inflammatory response, immune system, epithelia integrity and digestive process was analysed in the foregut and hindgut sections, as well as different histological parameters in the foregut.

Results: There were no differences in growth performance (p = 0.2703) and feed utilization (p = 0.1536), although a greater fish mortality was recorded in the VM group (p = 0.0141). In addition, this group reported a lower expression in genes related to pro-inflammatory response, as Interleukine-1β (il1β, p = 0.0415), Interleukine-6 (il6, p = 0.0347) and cyclooxigenase-2 (cox2, p = 0.0014), immune-related genes as immunoglobulin M (igm, p = 0.0002) or bacterial defence genes as alkaline phosphatase (alp, p = 0.0069). In contrast, the VM+ group yielded similar survival rate to FM (p = 0.0141) and the gene expression patterns indicated a greater induction of the inflammatory and immune markers (il1β, cox2 and igm). However, major histological changes in gut were not detected.

Conclusions: Using plants as the unique source of protein on a long term basis, replacing fishmeal in aqua feeds for gilthead seabream, may have been the reason of a decrease in the level of different pro-inflammatory mediators (il1 β, il6 and cox2) and immune-related molecules (igm and alp), which reflects a possible lack of local immune response at the intestinal mucosa, explaining the higher mortality observed. Krill and squid meal inclusion in vegetable diets, even at low concentrations, provided an improvement in nutrition and survival parameters compared to strictly plant protein based diets as VM, maybe explained by the maintenance of an effective immune response throughout the assay.

Keywords: Gene expression; Gilthead seabream; Histology; Intestine; Krill meal; Squid meal; Vegetable meal.

MeSH terms

  • Animal Feed / analysis*
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Aquaculture
  • Decapodiformes
  • Diet / veterinary*
  • Euphausiacea
  • Fishes
  • Gene Expression Profiling
  • Intestines / immunology*
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Sea Bream / immunology
  • Sea Bream / physiology*

Substances

  • Plant Proteins