Phytohormones enhanced drought tolerance in plants: a coping strategy

Environ Sci Pollut Res Int. 2018 Nov;25(33):33103-33118. doi: 10.1007/s11356-018-3364-5. Epub 2018 Oct 3.

Abstract

Drought stress is a severe environmental constraint among the emerging problems. Plants are highly vulnerable to drought stress and a severe decrease in yield was recorded in the last few decades. So, it is highly desirable to understand the mechanism of drought tolerance in plants and consequently enhance the tolerance against drought stress. Phytohormones are known to play vital roles in regulating various phenomenons in plants to acclimatize to varying drought environment. Abscisic acid (ABA) is considered the main hormone which intensifies drought tolerance in plants through various morpho-physiological and molecular processes including stomata regulation, root development, and initiation of ABA-dependent pathway. In addition, jasmonic acid (JA), salicylic acid (SA) ethylene (ET), auxins (IAA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs) are also very important phytohormones to congregate the challenges of drought stress. However, these hormones are usually cross talk with each other to increase the survival of plants in drought conditions. On the other hand, the transgenic approach is currently the most accepted technique to engineer the genes responsible for the synthesis of phytohormones in drought stress response. Our present review highlights the regulatory circuits of phytohormones in drought tolerance mechanism.

Keywords: Abscisic acid; Drought stress; Ethylene; Jasmonic acid; Phytohormones; Salicylic acid.

Publication types

  • Review

MeSH terms

  • Droughts*
  • Plant Development / genetics
  • Plant Development / physiology*
  • Plant Growth Regulators / genetics
  • Plant Growth Regulators / metabolism*
  • Stress, Physiological* / genetics

Substances

  • Plant Growth Regulators