Heavier pnictinidene gold(i) complexes

Dalton Trans. 2018 Oct 23;47(41):14503-14514. doi: 10.1039/c8dt03022g.

Abstract

N,C,N-Chelated pnictinidenes ArE [where E = As, Sb or Bi; Ar = 2,6-(tBuN[double bond, length as m-dash]CH)2C6H3] were used as ligands for the coordination of various gold(i) complexes. Thus, the reaction of ArE with [AuCl(Me2S)] gave complexes [AuCl(ArE)] [where E = As (1) or Sb (2)] that exhibited only limited stability in solution. By contrast, the reaction of ArBi with [AuCl(Me2S)] led to the immediate deposition of gold metal and the oxidation of the bismuth atom giving ArBiCl2. The treatment of a tetrameric gold alkynyl complex [Au(C[triple bond, length as m-dash]CPh)]4 with ArAs and ArSb gave ionic compounds [Au(ArAs)2]+[Au2(C[triple bond, length as m-dash]CPh)3]- [denoted as 3+[Au2(C[triple bond, length as m-dash]CPh)3]-] and [Au(ArSb)2]+[Au(C[triple bond, length as m-dash]CPh)2]- [denoted as 4+[Au(C[triple bond, length as m-dash]CPh)2]-], respectively. Finally, the reaction of ArE with the carbene gold(i) complex [Au(IPr)(MeCN)]+[BF4]- [where IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, MeCN = acetonitrile] produced ionic complexes [Au(IPr)(ArE)]+[BF4]- [for cations: E = As (5+), Sb (6+) or Bi (7+)]. All complexes were characterized using 1H and 13C NMR, high mass accuracy electrospray ionization mass spectrometry (ESI-MS), IR and Raman spectroscopy and (except for 1) by single-crystal X-ray diffraction analysis. Furthermore, the structure and bonding of both neutral and ionic complexes with different coordination patterns have also been investigated in detail using a Density Functional Theory (DFT) computational approach.