The influence of hypoxia and prolonged exercise on attentional performance at high and extreme altitudes: A pilot study

PLoS One. 2018 Oct 3;13(10):e0205285. doi: 10.1371/journal.pone.0205285. eCollection 2018.

Abstract

Introduction: Exposure to hypoxic conditions is reported to impair cognitive performance. Further, moderate physical exercise improves cognitive function, but little is known about the influence of exercise on cognitive function in hypoxia. Therefore, the current study aimed to examine the influence of hypoxia (HYP) and prolonged exercise (EX) on attentional performance.

Methods: A total of 80 participants (female: n = 29; male: n = 51) were assigned to four groups: HYP + EX (n = 15), HYP (n = 25), EX (n = 21) and normoxia (NOR) (n = 21). The Frankfurt Attention Inventory-2 (FAIR-2) was performed at four testing points (day 1, 14, 16 and 18) to assess attentional performance. All groups completed a pretest (D1) and a follow-up test (D18). In HYP + EX conditions, the cognitive task was performed in a hypoxic state after prolonged exercise (D14: 3950 m, D16: 5739 m) during a mountain climb on Mt. Kilimanjaro. Participants in HYP were tested under intermittent hypoxia at rest in a hypoxic chamber (D14: 3500 m, D16: 5800 m), and those in EX were tested under normoxia after prolonged exercise during a 7-day backcountry ski hiking tour. NOR was a control group, and participants completed all tests under normoxia and at rest.

Results: Hypoxia impaired the attentional functions performance value (PV) and continuity value (CV) for the HYP + EX (p = 0.000) and HYP (L: p = 0.025; K: p = 0.043) groups at 5739 m and 5800 m, respectively, but not the function quality value (QV). In contrast, the EX group did not exhibit changes in attentional function.

Conclusion: The current results suggest that attentional performance is impaired during extreme normobaric and hypobaric hypoxic exposure. We further conclude that greater cognitive impairment under hypobaric hypoxia during a mountain climb compared with normobaric hypoxia at rest is not caused by prolonged exercise, but may be influenced by other factors (e.g. low temperatures, dehydration, or sleep deprivation) that remain to be verified.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Altitude
  • Attention / physiology*
  • Cognition / physiology*
  • Exercise / psychology*
  • Female
  • Germany
  • Humans
  • Hypoxia / physiopathology
  • Hypoxia / psychology*
  • Male
  • Pilot Projects
  • Psychological Tests
  • Rest / psychology
  • Tanzania
  • Task Performance and Analysis

Associated data

  • figshare/10.6084/m9.figshare.6269705

Grants and funding

We acknowledge support by the DFG Open Access Publication Funds of the Ruhr-Universität Bochum. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.