Role of textural heterogeneity parameters in patient selection for 177Lu-PSMA therapy via response prediction

Oncotarget. 2018 Sep 7;9(70):33312-33321. doi: 10.18632/oncotarget.26051.

Abstract

Purpose: Prostate cancer is most common tumor in men causing significant patient mortality and morbidity. In newer diagnostic/therapeutic agents PSMA linked ones are specifically important. Analysis of textural heterogeneity parameters is associated with determination of innately aggressive and therapy resistant cell lines thus emphasizing their importance in therapy planning. The objective of current study was to assess predictive ability of tumor textural heterogeneity parameters from baseline 68Ga-PSMA PET prior to 177Lu-PSMA therapy.

Results: Entropy showed a negative correlation (rs = -0.327, p = 0.006, AUC = 0.695) and homogeneity showed a positive correlation (rs = 0.315, p = 0.008, AUC = 0.683) with change in pre and post therapy PSA levels.

Conclusions: Study showed potential for response prediction through baseline PET scan using textural features. It suggested that increase in heterogeneity of PSMA expression seems to be associated with an increased response to PSMA radionuclide therapy.

Materials and methods: Retrospective analysis of 70 patients was performed. All patients had metastatic prostate cancer and were planned to undergo 177Lu-PSMA therapy. Pre-therapeutic 68Ga- PSMA PET scans were used for analysis. 3D volumes (VOIs) of 3 lesions each in bones and lymph nodes were manually delineated in static PET images. Five PET based textural heterogeneity parameters (COV, entropy, homogeneity, contrast, size variation) were determined. Results obtained were then compared with clinical parameters including pre and post therapy PSA, alkaline phosphate, bone specific alkaline phosphate levels and ECOG criteria. Spearman correlation was used to determine statistical dependence among variables. ROC analysis was performed to estimate the optimal cutoff value and AUC.

Keywords: 177Lu-PSMA therapy; 68Ga-PSMA; prostate cancer; response prediction; tumor textural heterogeneity.