Piezo-phototronic Effect Enhanced Photodetector Based on CH3NH3PbI3 Single Crystals

ACS Nano. 2018 Oct 23;12(10):10501-10508. doi: 10.1021/acsnano.8b06243. Epub 2018 Oct 4.

Abstract

Piezoelectric organic-inorganic lead halide perovskites have recently attracted much attention in the field of optoelectronic devices. However, their piezoelectric properties as a possible way to modulate device performances have rarely been reported. Here, we study experimentally a photodetector based on CH3NH3PbI3(MAPbI3) single crystals, whose performance is effectively modulated via an emerging effect-the piezo-phototronic effect, which is to use the piezoelectric polarization charges to tune the optoelectronic processes at the interface. A piezoelectric coefficient of 10.81 pm/V of the CH3NH3PbI3 single crystal is obtained. Under 680 nm laser illumination with a power density of 3.641 mW/cm2 and at an external bias of 2 V, compared to the case without straining, the light current of the photodetector is enhanced by ∼120% when a 43.48 kPa compressive pressure is applied. The response speed of the photocurrent is 3 and 2 times faster than the cases without applying pressure for the light-on and light-off states, respectively. This work proves that the performance of the photodetector based on MAPbI3 single crystals can be effectively enhanced by the piezo-phototronic effect, providing a good method for optimizing the performance of future perovskite-based optoelectronic devices.

Keywords: perovskite-based single crystal; photodetectors; piezo-phototronic effect; piezoelectric charges; piezopotential.