Creatine supplementation improves neural progenitor cell survival in Huntington's disease

Brain Circ. 2016 Jul-Sep;2(3):133-137. doi: 10.4103/2394-8108.192519. Epub 2016 Oct 18.

Abstract

Preclinical and clinical studies suggest that striatal transplantation of neural stem cells (NSCs) and neural progenitor cells (NPCs) may be an appealing and valuable system for treating Huntington's disease. Nevertheless, for a neural replacement to become an effective translational treatment for Huntington's disease, a certain number of difficulties must be addressed, including how to improve the integration of transplanted cell grafts with the host tissue, to elevate the survival rates of transplanted cells, and to ensure their directed differentiation into specific neuronal phenotypes. Research focusing on the translational applications of creatine (Cr) supplementation in NSC and NPC cell replacement therapies continues to offer promising results, pointing to Cr as a factor with the potential to improve cell graft survivability and encourage differentiation toward GABAergic phenotypes in models of striatal transplantation. Here, we evaluate research examining the outcomes of Cr supplementation and how the timing of supplementation regimes may affect their efficacy. The recent studies indicate that Cr's effects vary according to the developmental stage of the cells being treated, noting the dynamic differences in creatine kinase expression over the developmental stages of differentiating NPCs. This research continues to move Cr supplementation closer to the widespread clinical application and suggests such techniques warrant further examination.

Keywords: Creatine; GABA; Huntington's disease; creatine kinase; development; differentiation; neuroprotection.

Publication types

  • Review