In Situ Investigation of Grain Evolution of 300M Steel in Isothermal Holding Process

Materials (Basel). 2018 Sep 30;11(10):1862. doi: 10.3390/ma11101862.

Abstract

The relationships between initial microstructures, process parameters, and grain evolutions in isothermal holdings have drawn wide attention in recent years, but the grain growth behaviors of 300M steel were not well understood, resulting in a failure in precise microstructure controlling in heat treatment. In this work, in situ observations were carried out to characterize the grain evolutions of 300M steel with varying holding time, holding temperatures, and initial microstructures. The intriguing finding was that the grain refinement by austenization of 300M steel was followed by a dramatic grain growth in the initial stage of holding (≤~600 s), and with increasing time (~600⁻7200 s), the average grain size appeared to have a limit value at specific temperatures. The austenization process accelerated the grain growth by generating large quantity of grain boundaries at the initial stage of holdings, and the growth rate gradually slowed down after holding for ~600 s because the driven force was weakened due to the reduction of grain boundary energy. The initial structure and the initial grain size of 300M steel had no obvious influences on the grain size evolutions. The mechanisms of grain growth were analyzed based on in situ observations and transmission electron microscope (TEM) characterizations. A grain evolution model considering the grain boundary migration of 300M steel was established for the isothermal holding process. Good agreement was obtained between the in situ observation results and the model calculation results. This investigation aimed to understand fundamentally the grain evolutions of 300M steel in the isothermal holding process.

Keywords: 300M steel; grain growth; grain size evolution; in situ observation.