Salidroside attenuates interleukin-1β-induced inflammation in human osteoarthritis chondrocytes

J Cell Biochem. 2019 Feb;120(2):1203-1209. doi: 10.1002/jcb.27076. Epub 2018 Sep 30.

Abstract

Salidroside, a bioactive constituent isolated from Rhodiola rosea, has been reported to have anti-inflammatory effects. However, the effects of salidroside on interleukin (IL)-1β-stimulated osteoarthritis (OA) chondrocytes remain to be elucidated. Thus, this study aimed to evaluate the anti-inflammatory effects of salidroside on IL-1β-stimulated human OA chondrocytes and explore its underlying mechanisms. Our results showed that salidroside significantly inhibited the production of nitric oxide and prostaglandin E-2, as well as suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 in IL-1β-stimulated chondrocytes ( P < .05). In addition, salidroside also suppressed IL-1β-induced matrix metalloproteinases production in human OA chondrocytes ( P < .05). Furthermore, pretreatment with salidroside prevented IL-1β-induced NF-κB activation in OA chondrocytes ( P < .05). In conclusion, the current study demonstrated that salidroside inhibited the IL-1β-induced inflammatory response in OA chondrocytes via inhibition of NF-κB activation.

Keywords: NF-κB pathway; inflammatory response; osteoarthritis (OA); salidroside.