A century of climate and land-use change cause species turnover without loss of beta diversity in California's Central Valley

Glob Chang Biol. 2018 Dec;24(12):5882-5894. doi: 10.1111/gcb.14458. Epub 2018 Oct 26.

Abstract

Climate and land-use changes are thought to be the greatest threats to biodiversity, but few studies have directly measured their simultaneous impacts on species distributions. We used a unique historic resource-early 20th-century bird surveys conducted by Joseph Grinnell and colleagues-paired with contemporary resurveys a century later to examine changes in bird distributions in California's Central Valley, one of the most intensively modified agricultural zones in the world and a region of heterogeneous climate change. We analyzed species- and community-level occupancy using multispecies occupancy models that explicitly accounted for imperfect detection probability, and developed a novel, simulation-based method to compare the relative influences of climate and land-use covariates on site-level species richness and beta diversity (measured by Jaccard similarity). Surprisingly, we show that mean occupancy, species richness and between-site similarity have remained remarkably stable over the past century. Stability in community-level metrics masked substantial changes in species composition; occupancy declines of some species were equally matched by increases in others, predominantly species with generalist or human-associated habitat preferences. Bird occupancy, richness and diversity within each era were driven most strongly by water availability (precipitation and percent water cover), indicating that both climate and land-use are important drivers of species distributions. Water availability had much stronger effects than temperature, urbanization and agricultural cover, which are typically thought to drive biodiversity decline.

Keywords: Bayesian; bird; climate; drought; global change; land use; occupancy; resurvey.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agriculture
  • Animals
  • Biodiversity*
  • Birds
  • California
  • Climate Change*
  • Ecosystem
  • Humans
  • Urbanization