Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication

Int J Mol Sci. 2018 Sep 25;19(10):2909. doi: 10.3390/ijms19102909.

Abstract

The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.

Keywords: DNA replication stress; Fanconi Anemia; genome stability; homologous recombination; replication fork restart; template-switching; translesion synthesis; ubiquitin.

Publication types

  • Review

MeSH terms

  • Animals
  • DNA / genetics*
  • DNA / metabolism
  • DNA Repair
  • DNA Replication*
  • DNA-Directed DNA Polymerase / metabolism
  • Fanconi Anemia / genetics*
  • Fanconi Anemia / metabolism
  • Fanconi Anemia Complementation Group D2 Protein / metabolism
  • Genomic Instability
  • Humans
  • Proliferating Cell Nuclear Antigen / metabolism
  • Ubiquitin / metabolism
  • Ubiquitin-Protein Ligases / metabolism
  • Ubiquitination*

Substances

  • Fanconi Anemia Complementation Group D2 Protein
  • Proliferating Cell Nuclear Antigen
  • Ubiquitin
  • DNA
  • Ubiquitin-Protein Ligases
  • DNA-Directed DNA Polymerase