Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge Using Electron Ptychography

Nano Lett. 2018 Nov 14;18(11):6850-6855. doi: 10.1021/acs.nanolett.8b02718. Epub 2018 Oct 4.

Abstract

Imaging the complete atomic structure of materials, including light elements, with minimal beam-induced damage of the sample is a long-standing challenge in electron microscopy. Annular bright-field scanning transmission electron microscopy is often used to image elements with low atomic numbers, but due to its low efficiency and high sensitivity to precise imaging parameters it comes at the price of potentially significant beam damage. In this paper, we show that electron ptychography is a powerful technique to retrieve reconstructed phase images that provide the full structure of beam-sensitive materials containing light and heavy elements. Due to its much higher efficiency, we can reduce the beam currents used down to the subpicoampere range. Electron ptychography also allows residual lens aberrations to be corrected at the postprocessing stage, which avoids the need for fine-tuning of the probe that would result in further beam damage and provides aberration-free reconstructed phase images. We have used electron ptychography to obtain structural information from aberration-free reconstructed phase images in the technologically relevant lithium-rich transition metal oxides at different states of charge. We can unambiguously determine the position of the lithium and oxygen atomic columns while amorphization of the surface, formation of beam-induced surface reconstruction layers, or migration of transition metals to the alkali layers are drastically reduced.

Keywords: Electron ptychography; Li-rich cathodes; STEM; batteries; beam damage; dose.

Publication types

  • Research Support, Non-U.S. Gov't