CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust

BMC Biotechnol. 2018 Sep 25;18(1):60. doi: 10.1186/s12896-018-0465-7.

Abstract

Background: The CRISPR/Cas9 system has been widely used to generate gene knockout/knockin models by inducing frameshift mutants in cell lines and organisms. Several recent studies have reported that such mutants can lead to in-frame exon skipping in cell lines. However, there was little research about post-transcriptional effect of CRISPR-mediated gene editing in vivo.

Results: We showed that frameshift indels also induced complete or stochastic exon skipping by deleting different regions to influence pre-mRNA splicing in vivo. In the migratory locust, the missing 55 bp at the boundary of intron 3 and exon 4 of an olfactory receptor gene, LmigOr35, resulted in complete exon 4 skipping, whereas the lacking 22 bp in exon 4 of LmigOr35 only resulted in stochastic exon 4 skipping. A single sgRNA induced small insertions or deletions at the boundary of intron and exon to disrupt the 3' splicing site causing completely exon skipping, or alternatively induce small insertions or deletions in the exon to stochastic alter splicing causing the stochastic exon skipping.

Conclusions: These results indicated that complete or stochastic exon skipping could result from the CRISPR-mediated genome editing by deleting different regions of the gene. Although exon skipping caused by CRISPR-mediated editing was an unexpected outcome, this finding could be developed as a technology to investigate pre-mRNA splicing or to cure several human diseases caused by splicing mutations.

Keywords: CRISPR/Cas9; Exon skipping; Gene editing; Migratory locust; Pre-mRNA splicing.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Migration
  • Animals
  • CRISPR-Cas Systems*
  • Exons
  • Frameshift Mutation
  • Gene Editing / methods*
  • Grasshoppers / genetics*
  • Grasshoppers / physiology
  • INDEL Mutation
  • Insect Proteins / genetics
  • Insect Proteins / metabolism
  • RNA Splicing*
  • Receptors, Odorant / genetics
  • Receptors, Odorant / metabolism
  • Sequence Deletion

Substances

  • Insect Proteins
  • Receptors, Odorant