Macroscopic chimeralike behavior in a multiplex network

Phys Rev E. 2018 Aug;98(2-1):022320. doi: 10.1103/PhysRevE.98.022320.

Abstract

In this paper we study the dynamics of a multiplex multilayer network, where each layer is composed of identical Kuramoto-Sakaguchi phase oscillators with nonlocal coupling. We focus on a three-layer multiplex network and observe a specific form of multiplex network behavior, the macroscopic chimeralike state. It is decomposed by a splitting of the layers with initially close dynamics into subgroups. The first group consists of two layers performing one type of dynamics, whereas the rest perform the other type, after the introduction of interlayer coupling. Based on an intensive computational analysis, we show that areas of macroscopic chimeralike states are observed close to the critical transition points of intralayer (microscopic) states in the parameter space. We find that this macroscopic chimeralike state is excited at weak and medium interlayer coupling strength, wherein the interlayer phase lag here plays an important role, since this is a network parameter which controls macroscopic dynamics and transforms boundaries between intralayer states. The obtained numerical results are validated analytically by considering the multiplex network dynamics using the Ott-Antonsen reduction of the governing network equations.