Fire rather than nitrogen addition affects understory plant communities in the short term in a coniferous-broadleaf mixed forest

Ecol Evol. 2018 Jul 22;8(16):8135-8148. doi: 10.1002/ece3.4263. eCollection 2018 Aug.

Abstract

Increasing fire risk and atmospheric nitrogen (N) deposition have the potential to alter plant community structure and composition, with consequent impacts on biodiversity and ecosystem functioning. This study was conducted to examine short-term responses of understory plant community to burning and N addition in a coniferous-broadleaved mixed forest of the subtropical-temperate transition zone in Central China. The experiment used a pair-nested design, with four treatments (control, burning, N addition, and burning plus N addition) and five replicates. Species richness, cover, and density of woody and herbaceous plants were monitored for 3 years after a low-severity fire in the spring of 2014. Burning, but not N addition, significantly stimulated the cover (+15.2%, absolute change) and density (+62.8%) of woody species as well as herb richness (+1.2 species/m2, absolute change), cover (+25.5%, absolute change), and density (+602.4%) across the seven sampling dates from June 2014 to October 2016. Light availability, soil temperature, and prefire community composition could be primarily responsible for the understory community recovery after the low-severity fire. The observations suggest that light availability and soil temperature are more important than nutrients in structuring understory plant community in the mixed forest of the subtropical-temperate transition zone in Central China. Legacy woody and herb species dominated the understory vegetation over the 3 years after fire, indicating strong resistance and resilience of forest understory plant community and biodiversity to abrupt environmental perturbation.

Keywords: burning; climate transitional zone; disturbance; light availability; recovery.