Preparation and Optimization of Optical pH Sensor Based on Sol-Gel

Sensors (Basel). 2018 Sep 21;18(10):3195. doi: 10.3390/s18103195.

Abstract

Making use of the sol-gel technique, an optical pH sensor was prepared, which was made from an organic carrier with four indictors including congo red, bromophenol blue, cresol red, and chlorophenol red, cross-linked by tetraethyl orthosilicate (TEOS) and cellulose acetate. The actual detection range of the optical pH sensor is 2.5⁻11.0. The optimal ratio of ethyl orthosilicate, absolute ethanol, deionized water, and hydrochloric acid in glue precursor of the sensor-sensitive membrane was explored. The orthogonal experiment was designed to optimize the dosage of cellulose acetate, N,N-dimethylformamide (DMF), indicator, hydrochloric acid, and precursor glue in preparing the sensor-sensitive membrane. The linearity, measurement accuracy, repeatability, stability, and response time of the prepared pH sensor were tested. The measurement results were analyzed using a support vector machine and linear regression. The experimental results show that the optical pH sensor has a measurement accuracy of up to 0.2 pH and better stability and repeatability than the traditional pH glass electrode.

Keywords: indicator; optical pH sensor; sensor-sensitive membrane; sol-gel technique.