Rainwater characteristics and interaction with atmospheric particle matter transportation analyzed by remote sensing around Beijing

Sci Total Environ. 2019 Feb 15;651(Pt 1):532-540. doi: 10.1016/j.scitotenv.2018.09.120. Epub 2018 Sep 14.

Abstract

Air pollution in Beijing has attracted much more attentions, and multiple regulations have been enacted since 2013. Based on the close link between the atmospheric particle matter concentration and the deposited load in rainwater, 336 rainwater samplings with seven parameters (pH, NH4+-N, NO3--N, P, S, Cu and Cd) at five-minute intervals in 2013 and 2014 were compared. The field monitoring and the temporal patterns analysis revealed a positive development of air quality. The lesser composition of coal in the energy consumption and the effective control of traffic emission were found. The average Aerosol Optical Depth (AOD) value around the sampling point during the 7 sampling rainfall events in 2014 was 2.855, which was higher than that in 2013 (1.807). It reflected the washing effect of rain on atmospheric particulates and highlighted the urban non-point source pollution effected by atmospheric deposition. AOD was demonstrated to perform well in reflecting regional air quality. A trajectory analysis conducted by HYSPLIT model in conjunction with the spatial distribution of AOD in the Beijing-Tian-Hebei (BTH) region depicted paths of air pollutants from long-range transport. The dominant trace was to the south of region. Cities around BTH were provided with different emission-reducing targets. Both Inner Mongolia and Henan province were suggested to control agricultural emissions. Shanxi, Shandong and cities around Bohai Bay should supervise the energy consuming industries. Furthermore, NO3--N was introduced to be an indicator of effect of the regional joint prevention and control in the future.

Keywords: AOD; HYSPLIT; Non-point source pollution; Particle matter; Rainwater characteristics.