Site-directed mutagenesis: role of lid region for T1 lipase specificity

Protein Eng Des Sel. 2018 Jun 1;31(6):221-229. doi: 10.1093/protein/gzy023.

Abstract

A broad substrate specificity enzyme that can act on a wide range of substrates would be an asset in industrial application. T1 lipase known to have broad substrate specificity in its native form apparently exhibits the same active sites as polyhydroxylalkanoate (PHA) depolymerase. PhaZ6Pl is one of the PHA depolymerases that can degrade semicrystalline P(3HB). The objective of this study is to enable T1 lipase to degrade semicrystalline P(3HB) similar to PhaZ6Pl while maintaining its native function. A structural study on PhaZ6Pl contains no lid in its structure and therefore T1 lipase was designed with removal of its lid region. BSLA lipase was chosen as the reference protein for T1 lipase modification since it contains no lid. Initially, structures of both enzymes were compared via protein-protein superimposition in 3D-space and the location of the lid region of T1 lipase was highlighted. A total of three variants of T1 lipase without lid were successfully designed by referring to BSLA lipase (a lipase without lid). The ability of T1 lipase without lid variants in degrading P(3HB) was investigated quantitatively. All the variants showed activity towards the substrate which confirmed that T1 lipase without lid is indeed able to degrade P(3HB). In addition, D2 was recorded to have the highest activity amongst other variants. Results obtained in this study highlighted the fact that native T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation but also P(3HB) by simply removing the lid region.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli / enzymology
  • Escherichia coli / genetics
  • Lipase / chemistry*
  • Lipase / genetics*
  • Lipase / metabolism
  • Mutagenesis, Site-Directed*
  • Polyhydroxyalkanoates / chemistry*
  • Polyhydroxyalkanoates / genetics
  • Polyhydroxyalkanoates / metabolism
  • Protein Domains
  • Substrate Specificity / genetics

Substances

  • Polyhydroxyalkanoates
  • Lipase