Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching

RNA. 2018 Dec;24(12):1813-1827. doi: 10.1261/rna.067884.118. Epub 2018 Sep 20.

Abstract

Riboswitches contain structured aptamer domains that, upon ligand binding, facilitate helical switching in their downstream expression platforms to alter gene expression. To fully dissect how riboswitches function requires a better understanding of the energetic landscape for helical switching. Here, we report a sequencing-based high-throughput assay for monitoring in vitro transcription termination and use it to simultaneously characterize the functional effects of all 522 single point mutants of a glycine riboswitch type-1 singlet. Mutations throughout the riboswitch cause ligand-dependent defects, but only mutations within the terminator hairpin alter readthrough efficiencies in the absence of ligand. A comprehensive analysis of the expression platform reveals that ligand binding stabilizes the antiterminator by just 2-3 kcal/mol, indicating that the competing expression platform helices must be extremely close in energy to elicit a significant ligand-dependent response. These results demonstrate that gene regulation by this riboswitch is highly constrained by the energetics of ligand binding and conformational switching. These findings exemplify the energetic parameters of RNA conformational rearrangements driven by binding events.

Keywords: expression platform; glycine; riboswitch; singlet; transcription termination.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Regulation
  • Glycine / chemistry
  • Ligands
  • Nucleic Acid Conformation*
  • Point Mutation
  • Riboswitch / genetics*
  • Transcription, Genetic*

Substances

  • Ligands
  • Riboswitch
  • Glycine