Identification and functional analysis of the doublesex gene in the sexual development of a hemimetabolous insect, the brown planthopper

Insect Biochem Mol Biol. 2018 Nov:102:31-42. doi: 10.1016/j.ibmb.2018.09.007. Epub 2018 Sep 17.

Abstract

In the sex determination cascade, the genes dsx (doublesex) in insects, mab-3 (male abnormal 3) in nematodes, and Dmrt1 (dsx/mab-3 related transcription factor-1) in vertebrates act as the base molecular switches and play important roles. Moreover, these genes share the same conserved feature domain-DNA-binding oligomerization domain (OD1), and female-specific dsx also has a conserved oligomerization domain 2 (OD2). Although sex determination and the functions of dsx in several holometabolous insects have been well documented, sex determination and the function of dsx in hemimetabolous insects remain a mystery. In this study, four dsx homologs were unexpectedly found in the Nilaparvata lugens (brown planthopper, BPH, order Hemiptera), which also showed a different evolutionary status. We found that only one of the four homologs, Nldsx, which has three alternative splicing variants (female-specific NldsxF, male-specific NldsxM, non-sex-specific NldsxC), was required in the sexual development of N. lugens. Compared with that of holometabolous species, the dsx of N. lugens contains a less conserved OD1, while the OD2 domain of BPH was not identifiable because the common region is poorly conserved, and the female-specific region is short. RNAi-mediated knockdown of Nldsx in female BPH resulted in a larger body size with a normal abdomen and reproductive system, while no changes in fertility were noted. However, adult males with RNA interference knockdown of NldsxM in nymphs became pseudofemales, were infertile, had abnormal copulatory organs, and had impassable deferent ducts with hyperplastic walls; additionally, the pseudofemales could not produce the normal courtship signals. Our results suggest that dsx plays a critical role in male BPH somatic development and mating behavior. This is the first study to show that dsx is essential for sexual development in a hemipteran species.

Keywords: Doublesex; Hemimetabolous insect; Nilaparvata lugens; RNAi; Sex determination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA-Binding Proteins* / genetics
  • DNA-Binding Proteins* / metabolism
  • Female
  • Hemiptera* / genetics
  • Hemiptera* / growth & development
  • Insect Proteins* / genetics
  • Insect Proteins* / metabolism
  • Male
  • Sex Characteristics*
  • Sexual Development / physiology*

Substances

  • DNA-Binding Proteins
  • Insect Proteins