Physiological electric field works via the VEGF receptor to stimulate neovessel formation of vascular endothelial cells in a 3D environment

Biol Open. 2018 Sep 19;7(9):bio035204. doi: 10.1242/bio.035204.

Abstract

Electrical stimulation induces significant neovessel formation in vivo We have shown that electrical stimulation of endothelial cells functions as an important contributor to angiogenesis in monolayer culture. Because angiogenesis occurs in a three-dimensional (3D) environment, in this study we investigated the effects of a direct current (DC) electrical field (EF) on endothelial neovessel formation in 3D culture. There was a significant increase in tube formation when endothelial cells were stimulated with EF for 4 h. The lengths of the tube-like structures were augmented further by the continued EF exposure. The lengths of the tubes also increased dose-dependently in the EF-treated cultures in the field strengths of 50 mV/mm∼200 mV/mm for 6 h. Electrical fields of small physiological magnitude enhanced VEGF expression by endothelial cells in 3D culture. EF treatment also resulted in activation of VEGFR2, Akt, extracellular regulated kinase 1,2 (Erk1/2), as well as the c-Jun NH2-terminal kinase (JNK). The tyrosine kinase inhibitor SU1498 that blocks VEGFR2 activity exhibited a potent inhibition of tube growth, and the Akt inhibitor MK-2206 2HCl, the Erk1/2 inhibitor U0126 and the JNK inhibitor SB203580 significantly reduced EF-stimulated tubulogenesis. These results suggest the importance of the VEGFR2 signaling pathway during EF-induced angiogenesis. The results of this study provide novel evidence that endogenous EFs may promote blood vessel formation of endothelial cells by activating the VEGF receptor signaling pathway.

Keywords: 3D; Angiogenesis; Electrical stimulation; Endothelial cells; Tube formation.