Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA

Food Technol Biotechnol. 2018 Jun;56(2):208-217. doi: 10.17113/ftb.56.02.18.5582.

Abstract

In this paper the effect of aflatoxin B1, ochratoxin A and zearalenon on morphology, growth parameters and metabolic activity of yeasts Saccharomyces cerevisiae, Saccharomyces uvarum, Candida utilis and Kluyveromyces marxianus was determined. The results showed that the three mycotoxins affected the morphology of all these yeasts, primarily the cell diameter, but not their final cell count. Fourier transform infrared spectroscopy showed that the yeast membranes bound the mycotoxins, C. utilis in particular. The cell membranes of most yeasts underwent denaturation, except S. uvarum exposed to ochratoxin A and zearalenone. In the early stage of fermentation, all mycotoxin-exposed yeasts had lower metabolic activity and biomass growth than controls, but fermentation products and biomass concentrations reached the control levels by the end of the fermentation, except for C. utilis exposed to 20 µg/mL of zearalenone. The adaptive response to mycotoxins suggests that certain yeasts could be used to control mycotoxin concentrations in the production of fermented food and beverages.

Keywords: FTIR; fermentation; mycotoxins; yeast growth; yeast morphology; yeasts.