Performance of Rayleigh-Based Distributed Optical Fiber Sensors Bonded to Reinforcing Bars in Bending

Sensors (Basel). 2018 Sep 16;18(9):3125. doi: 10.3390/s18093125.

Abstract

Distributed Optical Fiber Sensors (DOFSs), thanks to their multiple sensing points, are ideal tools for the detection of deformations and cracking in reinforced concrete (RC) structures, crucial as a means to ensure the safety of infrastructures. Yet, beyond a certain point of most DOFS-monitored experimental tests, researchers have come across unrealistic readings of strain which prevent the extraction of further reliable data. The present paper outlines the results obtained through an experimental test aimed at inducing such anomalies to isolate and identify the physical cause of their origin. The understanding of such a phenomenon would enable DOFS to become a truly performant strain sensing technique. The test consists of gradually bending seven steel reinforcement bars with a bonded DOFS under different conditions such as different load types, bonding adhesives, bar sections and more. The results show the bonding adhesives having an influence on the DOFS performance but not on the rise of anomalies while the reasons triggering the latter are narrowed down from six to two, reaching a strain threshold and a change in structure's deformative behavior. Further planned research will allow identification of the cause behind the rise of strain-reading anomalies.

Keywords: Rayleigh backscattering; damage identification; distributed optical fiber sensors; reinforced concrete members; spectral shift quality; steel reinforcement bars; strain-reading anomalies; structural health monitoring.