Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy

Nano Lett. 2018 Dec 12;18(12):7601-7608. doi: 10.1021/acs.nanolett.8b03156. Epub 2018 Sep 20.

Abstract

The integration of nanoplasmonic devices with a silicon photonic platform affords a new approach for efficient light delivery by combining the high field enhancement of plasmonics and the ultralow propagation loss of dielectric waveguides. Such a hybrid integration obviates the need for a bulky free-space optics setup and can lead to fully integrated, on-chip optical sensing systems. Here, we demonstrate ultracompact plasmonic resonators directly patterned atop a silicon waveguide for mid-infrared spectroscopic chemical sensing. The footprint of the plasmonic nanorod resonators is as small as 2 μm2, yet they can couple with the mid-infrared waveguide mode efficiently. The plasmonic resonance is directly measured through the transmission spectrum of the waveguide with a coupling efficiency greater than 70% and a field intensity enhancement factor of over 3600 relative to the evanescent waveguide field intensity. Using this hybrid device and a tunable mid-infrared laser source, surface-enhanced infrared absorption spectroscopy of both a thin poly(methyl methacrylate) film and an octadecanethiol monolayer is successfully demonstrated.

Keywords: Plasmonics; nanogap; optical parametric oscillator (OPO); silicon photonics; surface-enhanced infrared absorption (SEIRA); waveguide.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't