Wall Thickness of Industrial Multi-Walled Carbon Nanotubes Is Not a Crucial Factor for Their Degradation by Sodium Hypochlorite

Nanomaterials (Basel). 2018 Sep 12;8(9):715. doi: 10.3390/nano8090715.

Abstract

The propensity of multi-walled carbon nanotubes (MWCNTs) for biodegradation is important for their safe use in medical and technological applications. Here, we compared the oxidative degradation of two samples of industrial-grade MWCNTs-we called them MWCNT-d and MWCNT-t-upon their treatment with sodium hypochlorite (NaOCl). The MWCNTs had a similar inner diameter but they differed about 2-fold in the outer diameter. Electron microscopy combined with morphometric analysis revealed the different degradation of the two types of MWCNTs after their incubation with NaOCl-the thicker MWCNT-d were damaged more significantly than the thinner MWCNT-t. The both types of MWCNTs degraded at the inner side, but only MWCNT-d lost a significant number of the outer graphitic layers. Raman spectroscopy demonstrated that both MWCNTs had a similar high defectiveness. Using energy-dispersive X-ray spectroscopy, we have shown that the more degradable MWCNT-d contained the same level of oxygen as MWCNT-t, but more metal impurities. The obtained results suggest that the biodegradability of MWCNTs depends not only on the wall thickness but also on the defects and impurities. Thus, the biodegradability can be regulated by the synthesis conditions or the post-synthesis modifications. Such degradation flexibility may be important for both medical and industrial applications.

Keywords: Industrial-grade MWCNTs; biodegradation; oxidation; sodium hypochlorite.