The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis

J Mol Model. 2018 Sep 12;24(10):278. doi: 10.1007/s00894-018-3818-1.

Abstract

Density functional theory (DFT) combined with nonequilibrium Green's function (NEGF) formalism are used to investigate the effects of substitutional doping by nitrogen and sulfur on transport properties of AGNR-pentalene-AGNR nanojunction. A considerable spin filtering capability in a wide bias range is observed for all systems, which may have potential application in spintronics devices. Moreover, all model devices exhibit a negative differential effect with considerable peak-to-valley ratio. Thus, our findings provide a way to produce multifunctional spintronic devices based on nitrogen and sulfur doped pentalene-AGNR nanojunctions. The underlying mechanism for this interesting behavior was exposed by analyzing the transmission spectrum as well as the electrostatic potential distribution. In addition, a system doped with an odd number of dopant shows a rectifying efficiency comparable to other systems. The above findings strongly imply that such a multifunctional molecular device would be a useful candidate for molecular electronics. Graphical abstract The graphene-pentalene-graphene molecular junction.

Keywords: Density functional theory; Molecular junction; Negative differential effect; Rectification ratio; Spin filtering effect.