Generative Model for the Inverse Design of Metasurfaces

Nano Lett. 2018 Oct 10;18(10):6570-6576. doi: 10.1021/acs.nanolett.8b03171. Epub 2018 Sep 14.

Abstract

The advent of metasurfaces in recent years has ushered in a revolutionary means to manipulate the behavior of light on the nanoscale. The design of such structures, to date, has relied on the expertise of an optical scientist to guide a progression of electromagnetic simulations that iteratively solve Maxwell's equations until a locally optimized solution can be attained. In this work, we identify a solution to circumvent this conventional design procedure by means of a deep learning architecture. When fed an input set of customer-defined optical spectra, the constructed generative network generates candidate patterns that match the on-demand spectra with high fidelity. This approach reveals an opportunity to expedite the discovery and design of metasurfaces for tailored optical responses in a systematic, inverse-design manner.

Keywords: Metasurface; inverse design; nanophotonics; neural networks.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.