A dipteran larva-pitcher plant digestive mutualism is dependent on prey resource digestibility

Oecologia. 2018 Nov;188(3):813-820. doi: 10.1007/s00442-018-4258-4. Epub 2018 Sep 11.

Abstract

Positive species interactions tend to be context dependent. However, it is difficult to predict how benefit in a mutualism changes in response to changing contexts. Nepenthes pitcher plants trap animal prey using leaf pitfall traps known as pitchers. Many specialized inquiline organisms inhibit these pitchers, and are known to facilitate the digestion of prey carcasses in them. Nepenthes gracilis traps diverse arthropod prey taxa, which are likely to differ greatly in the ease with which they may be digested, independently of inquilines, by plant enzymes. In this study, we used in vitro experiments to compare the nutritional benefit provided by phorid (scuttle fly) and culicid (mosquito) dipteran larvae to their host, N. gracilis, and to each other. The effects of phorids on N. gracilis nutrient sequestration were very variable, being positive for large prey which have low digestibility, but negative for small prey which are highly digestible. However, the effect of culicids on N. gracilis and the effects of culicids and phorids on each other were not significantly altered by prey type. These results show that a digestive mutualism is highly dependent on the digestibility of the resource-a context dependency that conforms well to the predictions of the stress-gradient hypothesis in facilitation research. Our findings have significant implications for many other digestive mutualisms, and also suggest that greater insights may be gained from the synthesis of concepts between the fields of mutualism and facilitation research.

Keywords: Context dependency; Nepenthes gracilis; Nutritional mutualism; Phytotelma; Stress–gradient hypothesis.

MeSH terms

  • Animals
  • Larva
  • Plant Leaves*
  • Symbiosis*