Loss of odor-induced c-Fos expression of juxtaglomerular activity following maintenance of mice on fatty diets

J Bioenerg Biomembr. 2019 Feb;51(1):3-13. doi: 10.1007/s10863-018-9769-5. Epub 2018 Sep 11.

Abstract

Diet-induced obesity (DIO) decreases the number of OMP+ olfactory sensory neurons (OSN) in the olfactory epithelium by 25% and reduces correlate axonal projections to the olfactory bulb (OB). Whether surviving OSNs have equivalent odor responsivity is largely unknown. Herein, we utilized c-fos immediate-early gene expression to map neuronal activity and determine whether mice weaned to control (CF), moderately-high fat (MHF), or high-fat (HF) diet for a period of 6 months had changes in odor activation. Diet-challenged M72-IRES-tau-GFP mice were exposed to either a preferred M72 (Olfr160) ligand, isopropyl tiglate, or clean air in a custom-made Bell-jar infusion chamber using an alternating odor exposure pattern generated by a picosprizer™. Mice maintained on fatty diets weighed significantly more and cleared glucose less efficiently as determined by an intraperitoneal glucose tolerance test (IPGTT). The number of juxtaglomerular cells (JGs) decreased following maintenance of the mice on the MHF diet for cells surrounding the medial but not lateral M72 glomerulus within a 4 cell-column distance. The percentage of c-fos + JGs surrounding the lateral M72 glomerulus decreased in fat-challenged mice whereas those surrounding the medial glomerulus were not affected by diet. Altogether, these results show an asymmetry in the responsiveness of the 'mirror image' glomerular map for the M72 receptor that shows greater sensitivity of the lateral vs. medial glomerulus upon exposure to fatty diet.

Keywords: Diet-induced obesity; M72; Obesity; Olfactory; Olfactory bulb; Olfr160.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diet, High-Fat / adverse effects*
  • Mice
  • Obesity / etiology
  • Odorants
  • Olfactory Bulb / cytology*
  • Olfactory Receptor Neurons / drug effects
  • Olfactory Receptor Neurons / physiology*
  • Proto-Oncogene Proteins c-fos / metabolism*
  • Receptors, Odorant / metabolism

Substances

  • M72 odorant receptor, mouse
  • Proto-Oncogene Proteins c-fos
  • Receptors, Odorant