Spin Polarization through Floquet Resonances in a Driven Central Spin Model

Phys Rev Lett. 2018 Aug 24;121(8):080401. doi: 10.1103/PhysRevLett.121.080401.

Abstract

Adiabatically varying the driving frequency of a periodically driven many-body quantum system can induce controlled transitions between resonant eigenstates of the time-averaged Hamiltonian, corresponding to adiabatic transitions in the Floquet spectrum and presenting a general tool in quantum many-body control. Using the central spin model as an application, we show how such controlled driving processes can lead to a polarization-based decoupling of the central spin from its decoherence-inducing environment at resonance. While it is generally impossible to obtain the exact Floquet Hamiltonian in driven interacting systems, we exploit the integrability of the central spin model to show how techniques from quantum quenches can be used to explicitly construct the Floquet Hamiltonian in a restricted many-body basis and model Floquet resonances.