Intramolecular Torque Study of a Molecular Rotation Stimulated by Electron Injection and Extraction

J Phys Chem A. 2018 Sep 27;122(38):7614-7619. doi: 10.1021/acs.jpca.8b04368. Epub 2018 Sep 18.

Abstract

Rotation-inducing torque based on interatomic forces is a true indicator of internal molecular rotations. We use the induced intramolecular torque to study the underlying rotational mechanism stimulated by an electron injection or extraction for the rotor molecule 9-(2,4,7-trimethyl-2,3-dihydro-1 H-inden-1-ylidene)-9 H-fluorene, which consists of a "rotator" fragment and a "stator" fragment. The results show that the charged molecule in a quartet spin state can rotate internally, while that in the doublet state cannot. The torque on the rotator in the quartet state always maintains unidirectional rotation. In addition, the attachment/extraction of an electron leads to the reduction of the rotational energy barrier by about 18 kcal/mol, facilitating a more favorable molecular rotation than in the neutral singlet state. Our finding provides a molecular-level understanding of various transformation pathways for experimental designs and further demonstrates the effectiveness of the torque approach.