Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering

Mater Sci Eng C Mater Biol Appl. 2018 Nov 1:92:995-1005. doi: 10.1016/j.msec.2018.06.065. Epub 2018 Jun 30.

Abstract

Engineered tissue constructs rely on biomaterials as support structures for tissue repair and regeneration. Among these biomaterials, polyester biomaterials have been widely used for scaffold construction because of their merits such as ease in synthesis, degradable properties, and elastomeric characteristics. To mimic the aligned structures of native extracellular matrix (ECM) in tissues such as nerve, heart and tendon, various polyester materials have been fabricated into aligned fibrous scaffolds with fibers ranging from several nanometers to several micrometers in diameter by electrospinning in a simple and reproducible manner. These aligned fibrous scaffolds, especially the three-dimensional (3D) aligned nanofibrous scaffolds have emerged as a promising solution for tissue regeneration. Compared with two-dimensional (2D) scaffolds, the 3D aligned nanofibrous scaffolds provide another dimension for cell behaviors such as morphogenesis, migration and cell-cell interactions, which is important in regulating the stem cell fate and tissue regeneration. In this review, we provide an extensive overview on recent efforts for constructing 3D aligned polyester nanofibrous scaffolds by electrospinning, then the results of cell-specific functions dependent on such physical and chemical cues, and discuss their potentials in improving or restoring damaged tissues.

Keywords: Cell microenvironment; Electrospun aligned nanofiber; Polyester materials; Stem cells; Tissue regeneration.

Publication types

  • Review

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry
  • Humans
  • Nanofibers / chemistry*
  • Nerve Tissue / cytology
  • Stem Cells / cytology
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • Biocompatible Materials