Fast Open Modification Spectral Library Searching through Approximate Nearest Neighbor Indexing

J Proteome Res. 2018 Oct 5;17(10):3463-3474. doi: 10.1021/acs.jproteome.8b00359. Epub 2018 Sep 13.

Abstract

Open modification searching (OMS) is a powerful search strategy that identifies peptides carrying any type of modification by allowing a modified spectrum to match against its unmodified variant by using a very wide precursor mass window. A drawback of this strategy, however, is that it leads to a large increase in search time. Although performing an open search can be done using existing spectral library search engines by simply setting a wide precursor mass window, none of these tools have been optimized for OMS, leading to excessive runtimes and suboptimal identification results. We present the ANN-SoLo tool for fast and accurate open spectral library searching. ANN-SoLo uses approximate nearest neighbor indexing to speed up OMS by selecting only a limited number of the most relevant library spectra to compare to an unknown query spectrum. This approach is combined with a cascade search strategy to maximize the number of identified unmodified and modified spectra while strictly controlling the false discovery rate as well as a shifted dot product score to sensitively match modified spectra to their unmodified counterparts. ANN-SoLo achieves state-of-the-art performance in terms of speed and the number of identifications. On a previously published human cell line data set, ANN-SoLo confidently identifies more spectra than SpectraST or MSFragger and achieves a speedup of an order of magnitude compared with SpectraST. ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license at https://github.com/bittremieux/ANN-SoLo .

Keywords: approximate nearest neighbors; mass spectrometry; open modification searching; post-translational modifications; proteomics; spectral library.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computational Biology / methods
  • Databases, Protein*
  • HEK293 Cells
  • Humans
  • Peptide Library
  • Peptides / chemistry
  • Peptides / metabolism*
  • Protein Processing, Post-Translational
  • Proteomics / methods*
  • Reproducibility of Results
  • Search Engine / methods*
  • Software
  • Tandem Mass Spectrometry
  • Time Factors

Substances

  • Peptide Library
  • Peptides