Technical and dosimetric implications of respiratory induced density variations in a heterogeneous lung phantom

Radiat Oncol. 2018 Sep 4;13(1):165. doi: 10.1186/s13014-018-1110-2.

Abstract

Background: Stereotactic Body Radiotherapy (SBRT) is an ablative dose delivery technique which requires the highest levels of precision and accuracy. Modeling dose to a lung treatment volume has remained a complex and challenging endeavor due to target motion and the low density of the surrounding media. When coupled together, these factors give rise to pulmonary induced tissue heterogeneities which can lead to inaccuracies in dose computation. This investigation aims to determine which combination of imaging techniques and computational algorithms best compensates for time dependent lung target displacements.

Methods: A Quasar phantom was employed to simulate respiratory motion for target ranges up to 3 cm. 4DCT imaging was used to generate Average Intensity Projection (AIP), Free Breathing (FB), and Maximum Intensity Projection (MIP) image sets. In addition, we introduce and compare a fourth dataset for dose computation based on a novel phase weighted density (PWD) technique. All plans were created using Eclipse version 13.6 treatment planning system and calculated using the Analytical Anisotropic Algorithm and Acuros XB. Dose delivery was performed using Truebeam STx linear accelerator where radiochromic film measurements were accessed using gamma analysis to compare planned versus delivered dose.

Results: In the most extreme case scenario, the mean CT difference between FB and MIP datasets was found to be greater than 200 HU. The near maximum dose discrepancies between AAA and AXB algorithms were determined to be marginal (< 2.2%), with a greater variability occurring within the near minimum dose regime (< 7%). Radiochromatic film verification demonstrated all AIP and FB based computations exceeded 98% passing rates under conventional radiotherapy tolerances (gamma 3%, 3 mm). Under more stringent SBRT tolerances (gamma 3%, 1 mm), the AIP and FB based treatment plans exhibited higher pass rates (> 85%) when compared to MIP and PWD (< 85%) for AAA computations. For AXB, however, the delivery accuracy for all datasets were greater than 85% (gamma 3%,1 mm), with a corresponding reduction in overall lung irradiation.

Conclusions: Despite the substantial density variations between computational datasets over an extensive range of target movement, the dose difference between CT datasets is small and could not be quantified with ion chamber. Radiochromatic film analysis suggests the optimal CT dataset is dependent on the dose algorithm used for evaluation. With AAA, AIP and FB resulted in the best conformance between measured versus calculated dose for target motion ranging up to 3 cm under both conventional and SBRT tolerance criteria. With AXB, pass rates improved for all datasets with the PWD technique demonstrating slightly better conformity over AIP and FB based computations (gamma 3%, 1 mm). As verified in previous studies, our results confirm a clear advantage in delivery accuracy along with a relative decrease in calculated dose to the lung when using Acuros XB over AAA.

Keywords: Acuros XB; Lung SBRT; Phase weighted density; Respiratory induced tissue heterogeneity.

MeSH terms

  • Algorithms*
  • Four-Dimensional Computed Tomography
  • Humans
  • Lung / diagnostic imaging*
  • Organ Motion*
  • Phantoms, Imaging*
  • Radiometry
  • Radiosurgery / methods*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Respiration*