A new synchrotron rapid-scanning X-ray fluorescence (SRS-XRF) imaging station at SSRL beamline 6-2

J Synchrotron Radiat. 2018 Sep 1;25(Pt 5):1565-1573. doi: 10.1107/S1600577518010202. Epub 2018 Aug 28.

Abstract

This paper describes a new large-range rapid-scan X-ray fluorescence (XRF) imaging station at beamline 6-2 at the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory. This station uses a continuous rapid-scan system with a scan range of 1000 × 600 mm and a load capacity of up to 25 kg, capable of 25-100 µm resolution elemental XRF mapping and X-ray absorption spectroscopy (XAS) of a wide range of objects. XRF is measured using a four-element Hitachi Vortex ME4 silicon drift detector coupled to a Quantum Detectors Xspress3 multi-channel analyzer system. A custom system allows the X-ray spot size to be changed quickly and easily via pinholes ranging from 25 to 100 µm, and the use of a poly-capillary or axially symmetric achromatic optic may achieve a <10 µm resolution in the future. The instrument is located at wiggler beamline 6-2 which has an energy range of 2.1-17 keV, creating K emission for elements up to strontium, and L or M emission for all other elements. XAS can also be performed at selected sample positions within the same experiment, allowing for a more detailed chemical characterization of the elements of interest. Furthermore, sparse excitation energy XRF imaging can be performed over a wide range of incident X-ray energies. User friendliness has been emphasized in all stages of the experiment, including versatile sample mounts, He purged chambers for low-Z analyses, and intuitive visualization hardware and software. The station provides analysis capabilities for a wide range of materials and research fields including biological, chemical, environmental and materials science, paleontology, geology and cultural heritage.

Keywords: X-ray; fluorescence; fossils; imaging; synchrotron.