Scaling Behavior of Ionic Transport in Membrane Nanochannels

Nano Lett. 2018 Oct 10;18(10):6604-6610. doi: 10.1021/acs.nanolett.8b03235. Epub 2018 Sep 10.

Abstract

Ionic conductance in membrane channels exhibits a power-law dependence on electrolyte concentration ( G ∼ cα). The many scaling exponents, α, reported in the literature usually require detailed interpretations concerning each particular system under study. Here, we critically evaluate the predictive power of scaling exponents by analyzing conductance measurements in four biological channels with contrasting architectures. We show that scaling behavior depends on several interconnected effects whose contributions change with concentration so that the use of oversimplified models missing critical factors could be misleading. In fact, the presence of interfacial effects could give rise to an apparent universal scaling that hides the channel distinctive features. We complement our study with 3D structure-based Poisson-Nernst-Planck (PNP) calculations, giving results in line with experiments and validating scaling arguments. Our findings not only provide a unified framework for the study of ion transport in confined geometries but also highlight that scaling arguments are powerful and simple tools with which to offer a comprehensive perspective of complex systems, especially those in which the actual structure is unknown.

Keywords: Scaling behavior; access resistance; biological channel; electrodiffusion; ion transport.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computer Simulation
  • Diffusion
  • Electrolytes / chemistry
  • Ion Channels / chemistry*
  • Ion Transport*
  • Ions / chemistry
  • Membranes / chemistry
  • Models, Molecular
  • Nanostructures / chemistry*
  • Protein Conformation*
  • Software

Substances

  • Electrolytes
  • Ion Channels
  • Ions