Prospective application of melanized fungi for the biofiltration of indoor air in closed bioregenerative systems

J Hazard Mater. 2019 Jan 5:361:1-9. doi: 10.1016/j.jhazmat.2018.08.059. Epub 2018 Aug 19.

Abstract

Cultures of melanized fungi representative of the black yeast orders Capnodiales (Cladosporium cladosporioides and Neohortaea acidophila) and Chaetothyriales (Cladophialophora psammophila) were confined with indoor air from the laboratory during 48 h. Volatile organic compounds (VOCs) from the headspace were analyzed by thermal desorption gas chromatography time-of-fly mass spectrometry (TD-GC-ToFMS, detection threshold 0.1 μg m-3) and compared against an abiotic control. A mixture of 71 VOCs were identified and quantified in the indoor air (total concentration 1.4 mg m-3). Most of these compounds were removed in the presence of fungal biomass, but 40 newly formed putative volatile metabolites were detected, though at comparatively low total concentrations (<50 μg m-3). The VOCs emission profile of C. cladosporioides, a ubiquitous and well-known species often associated to the sick building syndrome, was consistent with previous literature reports. The specialized C. psammophila and N. acidophila, isolated respectively from gasoline polluted soil and from lignite, displayed rather specific VOCs emission profiles. Mass balances on the fungal uptake and generation of VOCs resulted in overall VOCs removal efficiencies higher than 96% with all tested fungi. Applied aspects and biosafety issues concerning the suitability of black yeasts for the biofiltration of indoor air have been discussed.

Keywords: Air biofiltration; Black yeasts; Fungal volatile metabolites; Gas chromatography time-of-flight mass spectrometry; Sick building syndrome.

MeSH terms

  • Air Pollutants / metabolism*
  • Air Pollution, Indoor / prevention & control*
  • Ascomycota / metabolism*
  • Biodegradation, Environmental
  • Cladosporium / metabolism*
  • Food Industry
  • Hydrophobic and Hydrophilic Interactions
  • Laboratories
  • Volatile Organic Compounds / metabolism*

Substances

  • Air Pollutants
  • Volatile Organic Compounds