Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates

Angew Chem Int Ed Engl. 2018 Sep 24;57(39):12721-12726. doi: 10.1002/anie.201806638. Epub 2018 Sep 3.

Abstract

Bimetallic iron-ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL-SO3 H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff-Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL-SO3 H materials opens a general approach to multifunctional catalytic systems (MM'@SILP+IL-func).

Keywords: bimetallic nanoparticles; hydrodeoxygenation; iron; ruthenium; supported ionic liquid phases.