Organic n-Channel Transistors Based on [1]Benzothieno[3,2- b]benzothiophene-Rylene Diimide Donor-Acceptor Conjugated Polymers

ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32444-32453. doi: 10.1021/acsami.8b10831. Epub 2018 Sep 12.

Abstract

Improving the charge-carrier mobility of conjugated polymers is important for developing high-performance, solution-processed optoelectronic devices. Although [1]benzothieno[3,2- b]benzothiophene (BTBT) has been frequently used as a high-performance p-type small molecular semiconductor and employed a few times as a building block for p-type conjugated polymers, it has never been explored as a donor moiety for high-performance n-type conjugated polymers. Here, BTBT has been conjugated with either n-type perylene diimide (PDI) or naphthalene diimide (NDI) units to generate a donor-acceptor copolymer backbone, for the first time. Charge-transport measurements of organic field-effect transistors show n-type dominant behaviors, with the electron mobility reaching ∼0.11 cm2 V-1 s-1 for PDI-BTBT and ∼0.050 cm2 V-1 s-1 for NDI-BTBT. The PDI-BTBT mobility value is one of the highest among the PDI-containing polymers. The high π-π stacking propensity of BTBT significantly improves the charge-carrier mobility in these polymers, as supported by atomic force microscopy and grazing incidence X-ray diffraction analyses. Phototransistor applications of these polymers in the n-type mode show highly sensitive photoresponses. Our findings demonstrate that incorporation of the BTBT donor unit within the rylene diimide acceptor-based conjugated polymers can improve the molecular ordering and electron mobility.

Keywords: BTBT; OFETs; charge transport; conjugated polymers; phototransistors.