Fabrication of Hierarchical ZnO@NiO Core-Shell Heterostructures for Improved Photocatalytic Performance

Nanoscale Res Lett. 2018 Aug 30;13(1):260. doi: 10.1186/s11671-018-2676-1.

Abstract

ZnO@NiO core-shell heterostructures with high photocatalytic efficiency and reusability were prepared via electrochemical deposition on carbon fiber cloth substrates. Their photocatalytic properties were investigated by measuring the degradation of rhodamine B and methyl orange (MO) under ultraviolet light irradiation. The photodegradation efficiency of the ZnO@NiO heterostructures toward both dyes was better than those of the pure ZnO nanorods and NiO nanosheets. The higher performance could be attributed to the formation of p-n heterojunction between ZnO and NiO. Especially, the ZnO@NiO heterostructure formed upon deposition of NiO for 10 min degraded 95% of MO under ultraviolet light irradiation for 180 min. The high photodegradation efficiency of the ZnO@NiO heterostructures was also attributed to the high separation efficiency of photogenerated carriers, as confirmed by the higher photocurrent of the ZnO@NiO heterostructures (eightfold) when compared with that of the pure ZnO nanorods. Moreover, the high photodegradation efficiency of the ZnO@NiO heterostructures was maintained over three successive degradation experiments and decreased to 90% after the third cycle.

Keywords: Electrochemical deposition; Photocatalytic; Photocurrent response; ZnO@NiO.