Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode

Nanoscale. 2018 Sep 13;10(35):16805-16811. doi: 10.1039/c8nr05291c.

Abstract

The van der Waals (vdW) heterostructure, made up of two dissimilar two-dimensional materials held together by van der Waals interactions, has excellent electronic and optoelectronic properties as it provides a superior interface quality without the lattice mismatch problem. Here, we report the development and photoresponse characteristics of a p-n diode based on a stacked black phosphorus (BP) and rhenium disulfide (ReS2) heterojunction. The heterojunction showed a clear gate-tunable rectifying behavior similar to that of the conventional p-n junction diode. Under UV illumination, the BP/ReS2 p-n diode displayed a high photoresponsivity of 4120 A W-1 and we were able to modify the photoresponse properties by adjusting the back gate voltage. Moreover, an investigation of various channel lengths yielded the highest photoresponsivity of 11 811 A W-1 for a BP length of 1 μm. These results suggested vdW 2D materials to be promising for developing advanced heterojunction devices for nano-optoelectronics.