Layer dependent magnetoresistance of vertical MoS2 magnetic tunnel junctions

Nanoscale. 2018 Sep 13;10(35):16703-16710. doi: 10.1039/c8nr04518f.

Abstract

Spin polarization of electrons through transition metal dichalcogenides (TMDs) from ferromagnetic metals (FMs) is a fascinating phenomenon in condensed matter physics. The spin polarized current makes high- and low-resistance states in FM/TMDs/FM junctions depending on magnetization alignment of FM electrodes. We have manifested vertical spin valve junctions by incorporating MoS2 layers of different thicknesses by an ultraclean fabrication method. The current-voltage (I-V) characteristics show the ohmic contact behavior, indicating that mono-, bi-, and tri-layer MoS2 work as conducting thin film. In contrast, FM/multilayer MoS2/FM junction shows non-linear I-V characteristics and the junction resistance increases as the temperature is lowered, indicating that multilayer MoS2 provides a tunneling barrier between FM electrodes. We have found that the magnetoresistance (MR) ratio increases gradually as the thickness of the MoS2 layer is increased. Our investigation will provide a guide to make an optimal choice in the development of magnetic tunnel junctions with two-dimensional layered TMDs.