Milk Protein Concentration Using Negatively Charged Ultrafiltration Membranes

Foods. 2018 Aug 28;7(9):134. doi: 10.3390/foods7090134.

Abstract

In this work, milk protein concentrate (MPC) was made using wide-pore negatively charged ultrafiltration membranes. The charged membranes were used for a six-fold volume concentration of skim milk and subsequent diafiltration to mimic the industrial MPC process. The charged 100 kDa membranes had at least a four-fold higher permeate flux at the same protein recovery as unmodified 30 kDa membranes, which are currently used in the dairy industry to make MPC. By placing a negative charge on the surface of an ultrafiltration membrane, the negatively charged proteins were rejected by electrostatic repulsion and not simply size-based sieving. Mass balance models of concentration and diafiltration were developed and the calculations matched the experimental observations. This is the first study to use wide-pore charged tangential-flow membranes for MPC manufacturing. Additionally, a unique mass balance model was applied, which accurately predicted experimental results.

Keywords: casein; dairy; deposit layer; permeate; polyethersulfone; regenerated cellulose; retentate; sieving coefficient.