Dispersal mode and spatial extent influence distance-decay patterns in pond metacommunities

PLoS One. 2018 Aug 28;13(8):e0203119. doi: 10.1371/journal.pone.0203119. eCollection 2018.

Abstract

Assuming that dispersal modes or abilities can explain the different responses of organisms to geographic or environmental distances, the distance-decay relationship is a useful tool to evaluate the relative role of local environmental structuring versus regional control in community composition. Based on continuing the current theoretical framework on metacommunity dynamics and based on the predictive effect of distance on community similarity, we proposed a new framework that includes the effect of spatial extent. In addition, we tested the validity of our proposal by studying the community similarity among three biotic groups with different dispersal modes (macrofaunal active and passive dispersers and plants) from two pond networks, where one network had a small spatial extent, and the other network had an extent that was 4 times larger. Both pond networks have similar environmental variability. Overall, we found that environmental distance had larger effects than geographical distances in both pond networks. Moreover, our results suggested that species sorting is the main type of metacommunity dynamics shaping all biotic groups when the spatial extent is larger. In contrast, when the spatial extent is smaller, the observed distance-decay patterns suggested that different biotic groups were mainly governed by different metacommunity dynamics. While the distance-decay patterns of active dispersers better fit the trend that was expected when mass effects govern a metacommunity, passive dispersers showed a pattern that was expected when species sorting prevails. Finally, in the case of plants, it is difficult to associate their distance-decay patterns with one type of metacommunity dynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity
  • Models, Biological*
  • Plant Dispersal*
  • Plants
  • Ponds* / chemistry
  • Spatial Analysis

Grants and funding

This work was supported by two scientific research grants (CGL2011-23907 and CGL2016-76024-R) from the Ministerio de Economía y Competitividad of the Spanish Government (http://www.idi.mineco.gob.es/portal/site/MICINN/), the Agency for Management of University and Research Grants (AGAUR) of the Generalitat de Catalunya (2017 SGR 548) (http://agaur.gencat.cat/) and by a scientific research grant (CRP-24943) from the Autonomous Region of Sardinia, Italy (https://www.regione.sardegna.it/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.